Lesson 5. What is a Statistical Model? - Part 1

1 Statistical models

- A model is a representation (or simplification) of reality
- A statistical model is a mathematical representation of the relationships among random variables
- Some purposes of statistical modeling:
 - 1. Making predictions, for example:
 - Predicting the price of a car based on its age, mileage, and model
 - Predicting the probability of acceptance to medical school based on GPA
 - 2. Understanding relationships, for example:
 - After taking mileage into account, how is the age of a car related to is price?
 - How are various measures of a golfer's performance related to the golfer's scoring average?
 - 3. Testing differences, for example:
 - Is the rate of headache relief for migraine sufferers who take a new medicine sufficiently higher than those in the control group?

Example 1. Suppose we are interested in predicting the price of a used car based on its mileage.

- a. In general, do you think more mileage would result in a higher or lower price?
- b. If we wanted to describe the relationship with a simple mathematical function, what could we use?

- Statistical models are not deterministic
 - 1. We don't expect perfectly accurate predictions
 - 2. We aim to explain as much variability as possible, without overfitting
 - 3. Even though there's randomness and uncertainty, we will still get meaningful results
 - We will quantify how confident we are in those results
 - "All models are wrong, but some are useful." —George Box, statistician

• Form of a statistical model:

0	<i>Y</i> is the	
0	X is the	
0	f is a	
0	ε is the	

- \diamond This is the part of the response variable *Y* that remains unexplained after considering the predictor *X*
- \diamond We will frequently assume ε is normally distributed, and it will be important to check this assumption

2 Terminology

•	: The people, objects, or cases on which data are recorded.
•	: The characteristics measured/recorded about each observational unit.
•	: Records numbers (suitable for arithmetic) about the observational unit.
•	: Records a category designation about the observational unit.
•	: What we call a categorical variable with only two categories.
•	: The variable that measures the outcome of interest.
•	: The variable(s) whose relationship to the response is being studied. When the primary goal is to make predictions, we call these predictor variables .
•	: The group we want to make a statement about. The entire pool from which the sample is drawn.
•	: A characteristic about the population.
•	: The collected data, gathered from a subset of the population.

•	: When the researcher manipulates the explanatory variable by as- signing the explanatory group or value to the observational units (also called experimental units or subjects in this setting). <u>Allows for</u> drawing cause-effect conclusions.
•	: When the researchers only observe and record information, as opposed to assigning the explanatory variable. <u>Cannot draw cause-effect</u> conclusions.
•	: Additional explanatory variables that are not of primary interest but are included in the model to control for their potential effects.

: A characteristic of the sample.

Example 2. You are interested in whether a midshipman's political inclination and GPA help predict his or her major. So you collect a sample of 50 mids, record each one's political inclination, GPA, and major, and analyze the data.

- a. What is the population of interest?
- b. Identify the response variable and the explanatory variables, and for each one indicate whether it is categorical or quantitative.
- c. Is this an experiment or an observational study?
- d. If you were to find a significant association between an explanatory variable and the response, would you be able to say there is a cause-effect relationship?
- e. If you find that in your sample of 50 mids, the average GPA is 2.8, is 2.8 a parameter or a statistic?